Kernel estimation for additive models under dependence
نویسندگان
چکیده
منابع مشابه
Nonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data
The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...
متن کاملGeneralized additive models for conditional dependence structures
We develop a generalized additive modeling framework for taking into account the effect of predictors on the dependence structure between two variables. We consider dependence or concordance measures that are solely functions of the copula, because they contain no marginal information: rank correlation coefficients or tail-dependence coefficients represent natural choices. We propose a maximum ...
متن کاملLocal polynomial estimation in partial linear regression models under dependence
A regression model whose regression function is the sum of a linear and a nonparametric component is presented. The design is random and the response and explanatory variables satisfy mixing conditions. A new local polynomial type estimator for the nonparametric component of the model is proposed and its asymptotic normality is obtained. Specifically, this estimator works on a prewhitening tran...
متن کاملWavelet Linear Density Estimation for a GARCH Model under Various Dependence Structures
We consider n observations from the GARCH-type model: S = σ2Z, where σ2 and Z are independent random variables. We develop a new wavelet linear estimator of the unknown density of σ2 under four different dependence structures: the strong mixing case, the β- mixing case, the pairwise positive quadrant case and the ρ-mixing case. Its asymptotic mean integrated squared error properties are ...
متن کاملGraph Estimation with Joint Additive Models.
In recent years, there has been considerable interest in estimating conditional independence graphs in high dimensions. Most previous work has assumed that the variables are multivariate Gaussian, or that the conditional means of the variables are linear; in fact, these two assumptions are nearly equivalent. Unfortunately, if these assumptions are violated, the resulting conditional independenc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastic Processes and their Applications
سال: 1993
ISSN: 0304-4149
DOI: 10.1016/0304-4149(93)90096-m